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Abstract—Few analytical solutions have been published in the past decades for quantifying the ballooning volume caused by elastic 
deformation of an open borehole; nevertheless none of them takes into consideration the effects of permeability and thermoelasticity. This 
paper introduces new analytical solutions aiming at predicting a radial elastic displacement for any point along an open borehole wall. The 
presented analytical formulas here are general and taking into account the effective stresses, thermoelasticity and the poroelasticity 
effects. Two analytical formulas are derived, one for impermeable borehole, whereas the second is for permeable borehole. To utilize the 
proposed analytical solution for estimation the volumetric expansion and contraction of an open borehole, a recognized mathematical 
method has been adapted to be used for defining the areal elastic deformation of an open borehole at a given depth, which later can be 
used to quantify the volumetric change of an open borehole for specified depth interval. In order to validate the proposed formulas a finite 
element simulation was utilized. Several cases have been examined and compared, generally good results were observed with relative 
error less than 15%. Finally, results of a sensitivity study which was performed in order to assess the effects of different parameters on 
volumetric deformation of the open borehole are presented and discussed in details, the main finding of this study was that the deformation 
area of the borehole due to the elastic deformation is not significant and controlled mainly by the wellbore pressure. 

Index Terms—Elastic deformation, thermoelasticity, effective stresses, Biot elastic constant, grain bulk modulus, ABAQUS, poroelasticity. 

——————————      —————————— 

1 INTRODUCTION                                                                     
CCURATE detection of drilling problems, without a 
doubt, it is an important moment during drilling opera-
tions. In drilling, thus far, there are problems, which are 

still complex to be recognized and classified. One of these 
problems is borehole ballooning or breathing.  
Borehole ballooning or breathing is a phenomenon, which can 
be described as the reversible process of active drilling fluid 
volume gain and loss during drilling operations. It is very cru-
cial to understand the major mechanisms and factors control-
ling the ballooning phenomenon to avoid confusion with con-
ventional losses or formation kick. Therefore misinterpretation 
of the consequences of this phenomenon can lead eventually 
to excessive non-productive time. So far five processes are 
known as the main causes of the borehole ballooning, they can 
be categorized as following [1 & 2]: 

• Drilling fluid related processes: 
 Thermal expansion and contraction of the drilling 

fluid due to change in system temperature. 
 Compression and expansion of the drilling fluid 

due to change in wellbore pressure. 
• Wellbore related processes:  

 Elastic deformation of the borehole and the cased 
hole. 

 The opening and closing of induced fractures at 
the near wellbore region. 

 The opening and closing of natural fractures [pre-
existing] intersected during drilling. 

 
 
 
 
Fig. 1 illustrates the main causes of the borehole ballooning. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig 1. The Main Causes of the Borehole Ballooning. 

 
The first analytical solution used to calculate the displace-
ments around a circular excavation was published by Kirsch 
(1898); although his solution is quite old, it is still useful for 
tunneling design.  
 
 

A 
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Gill (1989) identified the elastic deformation of the borehole 
wall due to pressure changes as the main driver of this phe-
nomenon [3]. Bjørkevoll et al (1994) and Aadnøy (1996) stud-
ied two contributors to borehole ballooning, drilling fluid ex-
pansion and contraction and the elastic deformation of bore-
hole and casing. They came up with the following conclusion: 
the change in volume of the wellbore was mainly governed by 
the expansion and the contraction of the drilling fluid [4]. 
 
Kårstad and Aadnøy (1996-1997) presented a method for cal-
culating the elastic deformation of the borehole wall in order 
to estimate the variation in volume of the wellbore. They did 
not consider the in situ stresses in their method. Moreover 
they did not use proper rock properties such as Young’s mod-
ules [5].  
 
In (2001) Helstrup et al, introduced an analytical formula for 
computing radial diametrical displacement of the borehole 
wall, they superimposed two equations, one for inward dis-
placement and a second for outward displacement. In order to 
validate their analytical solution, they compared the results of 
their analytical solution with a numerical solution [5]. In es-
sence their solution has significant shortcomings, which can be 
summarized as following: 

 They did not use realistic models for their compari-
sons; the models should be two dimensional for better 
comparisons. 

 The used numerical models for the comparisons did 
not take into account the poroelasticity theory. 

 They assumed that the deformable areas have perfect 
elliptical shape. 

 Their solution ignored the shear stresses. 
 
Recently, Al-Tahini et al (2008) performed experimental stud-
ies in order to identify a correlation between the far field 
stresses with introduced stresses, displacement and breakout 
stresses. Based on their presented work the following short-
comings can be drawn [6]: 

 They used uniaxial stresses and applied isotropic 
stresses. 

 Poroelasticity was ignored. 
 They considered the rocks as block (zero porosity) in 

the finite element simulation whereas at the lab they 
used rocks with porosity.   

 
The shortcomings which were mentioned in the foregoing 
were the main motivations for deriving the new analytical 
formulas. The proposed analytical formulas are initially used 
to compute the radial diametrical elastic deformation of an 
open borehole wall. Furthermore, the paper introduces an ac-
curate method for calculating the area of the deformation of 
the borehole wall which in turn can be used to estimate the 
ballooning volume. The main objective of the sensitivity 
study, presented at the end of the paper, is to individually 
determine the influences of different parameters on elastic 
deformation of an open borehole. 
 

2 THEORY AND MATHEMATICAL DERIVATION OF THE 
SOLUTIONS 

2.1 Basic Assumptions 
The following assumptions are the essential and basic for de-
riving the solutions, the advanced assumptions will be listed 
later beside the derivations. 

 Homogeneous and isotropic rock properties. 
 Consolidated rock. 
 Void space is fully saturated with one fluid. 
 Normal faulting regime,  
 An isotropic stress state exists. 
 The in-situ stress state has three known principal 

stresses.  
 The shear stresses are non-zero for arbitrary orienta-

tions of the borehole after the transformation. 
 Gravity force is excluded. 
 Plane strain status exists. 

2.2 Essential Steps 
The linear equation governing the normal stress/strain rela-
tion (Hooke’s law) in one dimension was the starting point for 
the derivations. 
σ = E ∗ ε                                                                                                      (1) 
 
ε = σ/E                                                                                                        (2) 
 
Assuming isotropic rock materials, the normal stress/strain 
equations in three dimensional Cartesian coordinate system 
(x, y, z) can be written as the following matrix [7]: 
 

�
εx
εy
εz
� =

1
E
∗ �

1 ˗υ ˗υ
˗υ 1 ˗υ
˗υ ˗υ 1

� ∗   ∗ �
σx
σy
σz
�                                                        (3) 

 
However when converted to cylindrical coordinates (r, 𝜃 , z), 
its matrix will have the following form: 
 

�
εr
εθ
εz
� =

1
E
∗ �

1 ˗υ ˗υ
˗υ 1 ˗υ
˗υ ˗υ 1

� ∗ �
σr
σθ
σz
�                                                              (4) 

 
Radial displacement for a cylindrical coordinates can be com-
puted using the following sequences: 
 

εθ = ∆ Circumference
Circumference

                                                                                    (5)
  

εθ =
2 ∗ π ∗ (r + u)− 2 ∗ π ∗ r 

2 ∗ π ∗ r
                                                           (6) 

 
εθ =

u
r

                                                                                                          (7) 
 
u = εθ ∗ r                                                                                                     (8) 
 
While drilling, the periodic expansion and contraction in the 
borehole wall are expected within the elastic reign. Thus, the 
radial displacement at any point along an open borehole is 
variable and depending on multiple parameters. It is a posi-
tive number in expansion case and a negative number in con-
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traction case. 

2.3 General Elastic Solution for Impermeable Borehole 
Wall 
In the following paragraphs only the important steps and 
equations will be explained. Thus, for more details, refer to 
Appendix [A]. According to Eq. 8 the tangential strain is the 
interesting strain which will be used for calculating the radial 
displacement. Therefore the derivation starts from the tangen-
tial strain formula (Eq. A2). As mentioned earlier, the input 
stresses must be the principal in-situ stresses. Since the well-
bore may take any orientation and azimuth, these stresses are 
to be transformed to a new Cartesian coordinate system (x⁰, 
y⁰, z⁰), where two stresses be perpendicular to the borehole 
whereas the third stress be parallel to the axes of the borehole. 
The three new stresses, σx°  , σy

°  and σz°  can be determined  using 
Eqs. A4, A5 and A6, respectively. The directions and the mag-
nitudes of the new stress components are given by the well-
bore inclination from vertical and azimuth [7]. 
For simplicity the following notations are used for vertical and 
deviated borehole, σH, σh, and σv, instead of σx° , 𝜎𝑦° and 𝜎𝑧°    
respectively. Once the stresses transformed and new stress 
components are obtained, the stress distribution around a 
borehole located in an arbitrary far-field stress field can be 
estimated using Bradley (1979) equations [8]. [See Eqs A10 to 
A13] 
Next step is to apply the advanced assumptions and consider-
ations to Eqs. A10, A11, A12 and A13; 

• Since predicting the radial displacement at the bore-
hole radius is the target [R=r]. 

• Considering the effective stress concept by including 
formation pore pressure.  

• Taking into consideration poroelasticity theory by us-
ing Biot elastic constant. 

• Concerning thermoelasticity by including thermal 
stress. 

• The rock formation has a constant pore pressure (im-
permeable borehole wall & there is no communication 
between borehole pressure and formation pressure). 

The resultant stresses after applying the advanced assump-
tions and considerations are effective stresses. The tangential 
strain formula (Eq. A2) can be rewritten by replacing σr , σθ 
and σz with Eqs. A14, A15 and A16 respectively, finally the 
tangential strain at any point along the borehole wall is com-
puted as seen in Eq. A20. Bear in mind that the computed tan-
gential strain in Eq. A20 considers the displacement towards 
the borehole center as positive displacement. Therefore the 
sign of the computed tangential strain in Eq. A20 must be 
changed, so that the outward displacement becomes positive 
[expansion]. 
 
u = (– ) ∗ εθ ∗ r                                                                                          (9) 
 
 
Finally the proposed formulas for computing the radial elastic 
displacement of an impermeable  borehole wall is obtained by 
substituting tangential strain in Eq. 9 by Eq. A20. 
 

u = r ∗
(1 + υ)

E �Pw −
(2υ − 1)
(1 + υ) ∗ �B ∗ Pp�−

(1− υ)
(1 + υ) ∗ σt

∆t

−
1

(1 + υ) ∗
(σH + σh − υ ∗ σv)− 2 ∗ (υ − 1)

∗ �(σH − σh) COS(2θ) + 2 ∗ τxy ∗ SIN(2θ)��                                 (10) 

 

2.4 General Elastic Solution for Permeable Borehole 
Wall 

 
The following points summarize the derivation steps; 

• Earlier mentioned basic assumptions are necessary. 
• Derivation starts from Eq. A2. 
• A term called swelling effect is considered, it adds an 

additional compressive stress to tangential and axial 
stresses [9]. 

• Applying the advanced assumptions and considera-
tions.  

• Because the borehole wall is permeable, the formation 
pore pressure is changed by communication with the 
borehole pressure. 

• After a certain time, the filter cake is built and conse-
quently the steady state condition is reached and the 
formation pore pressure at the borehole vicinity will 
equal the borehole pressure. Thus borehole pressure 
must be used rather than formation pore pressure 
when computing the effective stresses.   

• Insert the effective stresses Eqs. B1, B2 and B3 into Eq. 
A2. 

• The tangential strain formula is established (Eq. B5). 
• Eventually the analytical solution for obtaining the 

radial elastic displacement of a permeable borehole 
wall within the elastic deformation zone can be ob-
tained by replacing the tangential strain in Eq. 9 with 
Eq. B5.  All tables and figures will be processed as im-
ages. You need to embed the images in the paper it-
self. Please don’t send the images as separate files. 

 

u = r ∗
1
E �

Pw ∗ (1 + υ)− (B ∗ Pw) ∗ (2υ− 1)

− (1 − υ) ∗ �σt∆t + 2η �Pw − �B ∗ Pp���

− (υ2 − 1) ∗ �2(σH − σh) COS(2θ)

+ 4 ∗ τxy ∗ SIN(2θ)� − σH − σh + υ ∗ σv�                                      (11) 

Refer to Appendix [B] for more details. 
 

3 VOLUME OF ELASTICALLY DEFORMED BOREHOLE ES-
TIMATION APPROACH 
3.1 General Overview 
Focusing on a transverse section of an open borehole at a par-
ticular depth, when the borehole is deformed, the new shape 
of the borehole will not be uniform; however it will vary with 
the position around the borehole. According to the presented 
analytical solutions, two factors are responsible for having 
irregular shape. First factor, or the main dominator is the ani-
sotropic in-situ stresses (maximum and minimum horizontal 
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stresses), whereas the second factor is one of the shear stresses 
(τxy), which is in fact governed by borehole position (azimuth 
and inclination). In the best case when the borehole is vertical 
only the former factor exists and the shape of the deformed 
borehole will be perfectly elliptic. In general the unusual 
shapes are always expected. Therefore it was necessary to de-
termine a systematic and comprehensive method which can be 
used to accurately compute the difference in cross section area 
[deformation area] between the original borehole shape and 
the deformed borehole shape at a particular planar and depth. 
Once the difference in the cross section area is obtained the 
shortage or the excess in volume of the borehole for a desira-
ble depth interval can be estimated.  

3.2 Mathematical Description of the Method 
As it is obvious in Eqs.  10 and 11 the computed radial elastic 
displacements of the borehole wall considerably depend on 
the angle theta (𝜃 ), which represents the central angle of the 
borehole measured anticlockwise from the azimuth of maxi-
mum horizontal stress (σH)[5]. Fig. 2 shows the angle theta 
(𝜃 ). 
 

 

 

 

 

 

 

 
 

Fig 2. Angle Theta (𝜃 ) Direction and Starting Point (Trans-
verse Cross Section View). 

 
As it can be seen from Fig. 2, the angle theta (𝜃 ) starts from 
zero degree and increases along the circumference of the 
borehole till it gets back to the starting point. In mathematics, 
an arc of a circle is a portion of the circumference of the circle. 
The length of an arc is simply the length of its portion of the 
circumference. Actually, the circumference itself can be con-
sidered an arc length. The formula for measuring the length of 
an arc of a circle is: 
 
Arc Length = 
π ∗ Radius  of the circle ∗ Central angle in degrees 

180
         (12) 

By comparing Fig. 2 with Eq. 12 one can come up with the 
following fact; borehole radius and angle theta (𝜃 ) are corre-
sponding to radius of the circle and central angle respectively. 
Therefore Eq.12 can be used to compute the arc length along 
the borehole perimeter for each angle theta (𝜃 ) starting from 
0⁰ to 360⁰. Now Eq.12 can be rewritten as outlined below: 
 

Arc Length

=
π ∗ Initial radius  of borehole ∗ Angle theta in degree  

180
  (13) 

 

3.3 Identifying the Deformation Area and Computing 
the Volumetric Change 
Calling back the radial elastic displacement Eqs. 10 and 11, as 
it explained in the previous section those equations are valid 
only if deformation occurs to the borehole wall and they are 
used to predict the radial elastic  displacement along the cir-
cumference of the borehole for a given depth, where only an-
gle theta (𝜃 ) is variable. In order to identify deformation area, 
the arc length of the virgin borehole must be coupled with the 
radial elastic displacement of the borehole wall after defor-
mation. The only variable which is in common between the arc 
length of the virgin borehole and radial elastic displacement of 
the borehole wall is angle theta (𝜃 ). In other words for each 
angle there are specific arc length and radial elastic displace-
ment. Let’s now plot arc length in [x] axis (computed by Eq. 
13) versus corresponding radial elastic displacement in [y] axis 
(calculated by either Eq. 10 or 11) for a complete cycle of the 
angle theta (𝜃 ) starting from [0⁰] to [360⁰] by [1⁰] increment. 
Fig. 3 illustrates the inclusive summary.  

 From Fig. 3 one can conclude the following points: 
 The positive displacements are identical representa-

tive to the borehole expansion. 
 The negative displacements are identical representa-

tive to the borehole contraction. 
 The areas under the curves in Fig. 3 are the defor-

mation areas. 
 The total deformation area is equal to the sum of the 

areas under the curves. 
Based on the points outlined above the total deformation area 
for a given depth can be predicted only if the area under each 
curve is individually estimated. Therefore it was necessary to 
define a method which can easily calculate the area under the 
curve. Several methods are used to estimate the area under the 
curve one of this method is Riemann sum [10]. 
By employing this method, first we divide the area under the 
curve into small rectangles, then we calculate the area of the 
each rectangle individually, afterwards the total deformation 
area can be estimated by adding up all the calculated areas of 
the rectangles. 
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Fig 3. Arc length vs Radial Elastic Displacement Plot [for Spe-
cific Depth] to Define the Total Deformation Area.  

 
The resulting deformation area of this process can be used to 
estimate the volumetric change due to elastic deformation for 
one increment in depth [Deformation volume]. 
 
Deformation volume
= Total Deformation Area ∗ Desirable (increment in)depth   (14) 
The same process must be repeated for each increment in 
depth. Finally the summation of deformation volumes will 
result in the total volumetric change of the open borehole in-
terval. Once more, the total volumetric change of the open 
borehole interval might be negative or positive number, nega-
tive number indicates to contraction in the borehole and con-
sequently excessive return drilling fluid at the surface is ex-
pected. However the positive number is the sign of the expan-
sion in the borehole, which leads to loss more drilling fluid to 
fill the gap. Fig. 4 presents the outline to identify the total vol-
umetric change of the open borehole interval due to elastic 
deformation, for better illustration. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4. Workflow to Identify the Total Volumetric Change of 
the Open Borehole Interval Due to Elastic Deformation. 

 

4  SOLUTIONS VALIDATION 
Finite element simulations were performed to validate the 
proposed analytical solutions using ABAQUS. Two models 
were constructed. Several cases were examined. Data related 
to radial elastic displacement along the perimeter of the bore-
hole in all cases were extracted subsequently the total defor-
mation area for each case was calculated by using similar 
method to the one used to estimate the total deformation area 
in the analytical solutions. Finally, the relative error was used 
as a key performance indicator in order to measure the 
strength of the relation between the numerical and analytical 
solutions. Length and width of the used model and the model 
after applying the mesh is shown in Fig. 5. 
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Fig 5. Geometry of the Models and Stresses Deployment 
 
 
4.1 Poroelasticity Implementation 
Applying poroelasticity theory in ABAQUS requests to identify a 
relation between Biot elastic constant [𝛼 ] and the rock properties. 
The Biot elastic constant of a rock is an important poroelastic pa-
rameter that relates stresses and formation pore pressure, it 
measures the ratio of the fluid volume squeezed out to the volume 
change of the rock if the latter is compressed while allowing the 
fluid to escape. Being described as [11]; 

 

α = 1 −
Frame bulk modulus 
Grain bulk modulus

                                                           (15) 
 

Frame Bulk Modulus =
Young’s modulus 

3 ∗ (1− 2 ∗ Poisson ratio)
                   (16) 

 
By knowing Biot elastic constant and frame bulk modulus the 
grain bulk modulus can be calculated and used. Several equa-
tions were suggested to estimate the Biot elastic constant only 
by using the rock porosity.  The strength of discrepancy be-
tween those equations is very high at low porosity and vice 
versa. In addition to the mathematical equations an experi-
mental work was performed by Detournay and Cheng (1993) 
to define the relation between Biot elastic constant and rock 
porosity and then the mathematical and experimental Biot 
elastic constant versus porosities were plotted. Consequently 
the best correlation was established and the following equa-
tion was recommended [12]: 
 

α =
P ∗ ∅q

1 + ∅
                                                                                                (17) 

(P) and (q) are constant values and they vary with the rock 
type. In order to assign one porosity for a given Biot elastic 
constant, first we calculate the porosity using the equations 
listed in Appendix [C]. The second step is to assume initial 
values to two constants (P) and (q), because only one Biot elas-
tic constant exists every time. Therefore the third step is to 
define the actual values of the two constants by using Eq. 17 
for all the pre-calculated porosities in conjunction with one of 
the available statistical tools such as Oracle Crystal Ball. Final-
ly, by knowing the two constants and Biot elastic constant the 

best corresponding porosity can be calculated by using Eq. 17. 
 
4.2 Models Setup 
The models were set in a manner that all the basic and advanced 
assumptions have been implemented. In order to simulate the real 
conditions, the model was initially constructed without borehole, 
the stresses were first applied then the borehole was introduced 
and borehole pressure was applied. As it was explained earlier the 
poroelasticity was implemented by introducing porosity, grain 
bulk modulus, fluid bulk modulus and permeability, for simplicity 
water was used as fluid media, porosity and permeability were 
kept constant, fluid specific weight was defined based on the ap-
plied formation pore pressure. Pore fluid and stress element with 
eight nodes type was used. To guarantee constant formation pore 
pressure for entire simulation running time, a formation pore pres-
sure boundary condition was defined. For permeable borehole wall 
model, an additional formation pore pressure boundary condition 
is applied   at the borehole wall. Additional boundary conditions 
were needed to prevent any displacement/deformation of initial 
model from applied loads. Fig. 6 shows the model with the main 
boundary conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6. Model with Main Boundary Conditions. 
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4.3 Results and Comparisons 
Results of finite element (numerical) analysis have been used to verify the analytical solutions proposed for elastic deformation 
of open boreholes. Table 1 presents the input data used in ABAQUS for all examined cases. The comparison between analytical 
solution results and simulation results in terms of total deformation area and relative error is illustrated in Table 2. From Table 2 
it is observed that the relative errors are less than 15% which indicates good match between the two solutions. Thus the analyti-
cal solutions proposed in this paper for elastic deformation give reasonably accurate results. 
 

Input Data 

Case 1 2 3 4 5 6 
Depth [ft] 3000 3000 6000 5000 5000 12000 
Borehole Radius [in] 4.25 4.25 4.25 6.125 6.125 4.25 
Vertical Stress [psi] 3300 3300 6000 5500 5500  5500 
Max Horizontal Stress [psi ] 2850 2850 5640 4750 4750 4750 
Min Horizontal Stress [psi] 2400 2400 4200 4000 4000 4250 
Formation Pore Pressure  [psi] 1320 1320 3480 2200 2200 2250 
Applied Borehole Pressure [psi] 2950 1838 4662 4920 2860 3731 
Young’s Modulus [psi] 1450326 1450326 2273416 1740391 1740391 2175489 
Poisson’s Ratio 0.35 0.35 0.3 0.4 0.4 0.35 
Biot Elastic Constant 0.8 0.7 0.75 0.7 0.7 0.85 
Permeability [in²] 1.5E-10 1.5E-10 1.5E-10 1.5E-10 1.5E-10 1.5E-10 
Porosity [%] 17 16 14 10 10 18 
Fluid Specific Weight [Ib/in³] 0.0367 0.0367 0.0483 0.0367 0.0367 0.0375 
Fluid Bulk modulus [psi] 250000 250000 250000 250000 250000 250000 
Grain Bulk modulus [psi] 8057368 5371579 7578054 9668842 9668842 16114737 

Table 1. Input Data for Two Models. 
 

C
ase 

Impermeable Borehole Wall 
Total Deformation Area [in²] 

Permeable Borehole Wall 
Total Deformation Area [in²] 

Analytical Re-
sults 

Numerical 
Results 

Relative Error 
% 

Analytical 
Results 

Numerical 
Results 

Relative Error % 

1 0.0161 0.0183 14 0.0111 0.0126 14 
2 -0.1045 -0.0978 6 -0.1111 -0.1042 6 
3 -0.0467 -0.0538 15 -0.0598 -0.0688 15 
4 0.0536 0.0572 7 0.0411 0.0374 9 
5 -0.3369 -0.3257 3 -0.3494 -0.3611 3 
6 -0.1585 -0.1345 15 -0.1685 -0.1512 10 

Table 2. Results and Comparisons. 
 
 
5 SENSITIVITY STUDY ON ELASTIC DEFORMATION OF 
THE OPEN BOREHOLE 
 
The main task of the present study is to individually pinpoint 
the influences of different parameters on elastic deformation 
of the open borehole, nine parameters have been examined. 
The data used for the current study here is synthetic data and 
was carefully selected. Table 3 shows the parameters with base 
case data and the other relevant data required to perform the 
work.  
Borehole inclination and orientation are used instead of the 
stresses to determine the impacts of the far-field principle 
stresses, therefore the stress transformation equations have to 
be used to   compute the actual applied stresses in the bore-
hole coordinate system whenever azimuth and inclination has 
been changed. In total nine cases will be studied, for the sake 
of this sensitivity study, one parameter is allowed to be 

changed each time whereas the others are frozen. Allowable 
variation from the base case for each parameter is set to be 
between -20% to 20%.  
 
Proposed general solutions for computing the radial  elastic 
displacements in permeable borehole wall is used to estimate 
the deformation area for each case .Because the layer thickness 
is assumed to be one feet, therefore the deformation volume is 
equal to the estimated deformation area. The drilling fluid 
temperature was selected to be 113.4⁰ C for the base case so 
that the effect of the thermal stress can be eliminated. 
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Parameter Value 

Main data 

Young’s Modulus [psi] 2900653 
Poisson’s Ratio 0.35 
Biot Elastic Constant 0.8 
Formation Pore Pressure  [psi/ft] 0.5 
Drilling Fluid Temperature  [⁰C] 113.4 
Inclination [⁰] 18 
Azimuth [⁰] 18 
Borehole Radius [in] 6.125 
Borehole Pressure [psi/ft] 0.983 

Relevant data 

Depth [ft] 12000 
Thermal Gradient [⁰C/ft] 0.00945 
Thermal Expansion Coefficient [1/ ⁰C] 0.000012 
Vertical l Stress Gradient [psi/ft]  1.2 
Max Horizontal Gradient Stress [psi/ft] 0.97 
Min Horizontal Gradient  Stress [psi/ft] 0.85 

Table 3: The Base Case and the Relevant Data Used for the 
Study. 

 
5.1 Results and Discussion 
The results of the study are graphically presented in Fig. 7. 
From Fig. 7 it is observed that the deformation volume is di-
rectly proportional to borehole pressure, Poisson’s ratio, for-
mation pore pressure and Biot elastic constant and it is in-
versely proportional to the drilling fluid temperature and in-
clination. In addition it is obvious that a change in Young’s 
modulus, wellbore radius or azimuth would slightly change 
the magnitude of the deformation but not the status of the 
borehole [From expansion to contraction or vice versa]. These 
observations are logical and foreseeable and can be scientifi-
cally explained. 
 
Borehole pressure:  
An increase in the borehole pressure certainly would cause the 
borehole to expand as long as no change occurs to the initial 
status of the in situ stresses. 
 
Formation pore pressure and Biot elastic constant:  
These two parameters have direct influence on the effective 
stresses. Any change in one of them will cause immediate 
change to the magnitude of the effective stresses. Any increase 
in one of them will cause immediate decrease to the magni-
tude of the effective stresses and consequently an expansion to 
the borehole is anticipated. 
 
Poisson’s ratio:  
In a real situation two of the rock properties would not change 

independently Poisson’s ratio and Young’s modulus. Howev-
er to satisfy the objective of this study we treat them individu-
ally. As it is well known, the in-situ stresses are related to one 
another. This means that as the axial stress squeezes the rock 
vertically, it also pushes the rock horizontally, affecting the 
horizontal stresses which may be constrained by surrounding 
rocks. The amount of resulting horizontal stress depends 
largely upon the Poisson’s ratio. Therefore if the Poisson’s ra-
tio is allowed to increase without changing the magnitude of 
the stresses the effect of the borehole pressure will be higher 
on the rock causing the borehole to expand. 
 
Drilling fluid temperature:  
Thermal stress mainly is induced by the difference in tempera-
ture between the drilling fluid temperature and the formation 
temperature especially at high temperature high pressure 
wells. If the difference in temperature is considerably high, the 
resultant thermal stress will be high likewise; causing an 
enormous increase in tangential and axial stresses consequent-
ly a contraction to the borehole is anticipated. 
 
Inclination:  
According to transformation formulas any increase in the 
borehole inclination will result in an increase to the horizontal 
stresses which in turn will increase the local effective stresses 
and according to that borehole will shrink. 
 
Young’s modulus, wellbore radius and azimuth:  
Based on the data used for the present study the effect of these 
three variables on the deformation is incommodious and they 
cannot change the status of the borehole independently. As it 
can be seen in Fig. 7, the deformation volume for the base case 
is negative indicating a contraction status which will never be 
changed even with increase or decrease these parameters. 
Therefore Young’s modulus, wellbore radius and azimuth 
cannot be the main dominator in the cases when they are al-
lowed to change with freezing the other parameters. 
 
Other important observation which can be extracted from the 
study is that the deformation area of the borehole due to the 
elastic deformation is not significant and it does not exceed 
quarter inches square in worst cases. 
 
Based on the aforementioned discussion the parameters which 
have impact on the deformation volume of an open borehole, 
can be classified based on different aspects. The flowchart be-
low [Fig. 8] clearly illustrates the hierarchy of proposed classi-
fication by the authors. 
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Fig 7. Variation in the Deformation Volume for Different Cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Fig 8. Hierarchy of Proposed Classification. 
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6 CONCLUSIONS 
 
The main conclusion of the presented work can be summa-
rized in the following points: 

 The analytical formulations proposed in this paper for 
estimating the radial elastic displacement of the open 
borehole wall give reasonably accurate results as in-
dicated by the relative error shown in validation sec-
tion; in addition they take into account the factors 
which have not been considered formerly.  

 Recognized mathematical methods have been 
adapted to estimate the deformation area for a given 
depth. 

 Practical concept to determine the volumetric change 
of an open borehole has been comprehensively de-
scribed.  

 Practically, the impermeable proposed solution is val-
id once the rock formation is exposed to the drilling 
fluid and last as long as no filtration occurs [Initial 
condition], whereas the permeable solution is effec-
tive only when a stable mud cake is built [Steady stat 
condition]. 

 Alternate models to investigate the radial elastic dis-
placement of an open borehole using ABAQUS are 
presented. 

 Estimation of volumetric change induced by expan-
sion and contraction of natural and induced fractures 
is not an easy task and has high uncertainty due to 
the lack of accurate data such as the number of active 
fractures and the interconnection between the existing 
fractures; however having a concrete idea about the 
elastic deformation of the borehole wall besides the 
thermal expansion and the compressibility of the 
drilling fluid would assist to improve the estimation 
quality by reducing the uncertainty. 

 The sensitivity study demonstrates that the volumet-
ric change of the borehole due to the elastic defor-
mation;  
 Is volatile and mainly controlled by the drilling 

fluid weight and temperature. 
 Is not significant when taken into account indi-

vidually. 
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9 NOMENCLATURES 
 
σ   Normal stress  

ε     Normal strain  

E     Young’s modulus 

𝜎𝑥  Far field principle stress in [x] axis  

𝜎𝑦 Far field principle stress in [y] axis 

𝜎𝑧 Far field principle stress in [z] axis 

𝜀𝑥  Principle strain in [x] axis 

𝜀𝑦 Principle strain in [y] axis 

𝜀𝑧 Principle strain in [z] axis 

υ Poisson ratio 

𝜎𝑟 Radial stress 

𝜎𝜃 Tangential stress  

𝜎𝑧 Stress along the borehole axis 

𝜀𝑟  Radial strain 

𝜀𝜃 Tangential strain  

𝜀𝑧 Strain along the borehole axis 

r Wellbore radius 

u Radial elastic displacement for the borehole 

𝜎𝑥°  Transformed stress in in [x] axis 

𝜎𝑦°  Transformed stress in in [y] axis 

𝜎𝑧° Transformed stress in in [z] axis 

𝜏𝑥𝑦°  Shear stresses in [x,y] plane 

𝜏𝑦𝑧°  Shear stresses in [y,z] plane 

𝜎𝐻 Maximum horizontal principle stress 

𝜎ℎ   Minimum horizontal principle stress 
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𝜎𝑣 Vertical principle stress 

ω  Borehole azimuth 

δ Borehole inclination 

R Arbitrary radius 

𝜃 Angle around the borehole measured anticlock-
wise from the azimuth of σH 

σrr Effective radial stress 

σθθ Effective tangential stress  

σzz Effective stress along the borehole axis 

τθz Shear stresse in [θ,z] plane 

σt∆t Thermal stress 

𝛼𝑡 Thermal expansion coefficient 

𝑇𝑖 Original formation temperature 

𝑇𝑤 Drilling fluid temperature  

Pw Borehole Pressure 

Pp Formation pore pressure 

𝛼 Biot’s elastic constant 

𝜂 Poroelastic stress coefficient 

∅ Porosity  
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11 APPENDIX A 
By Breaking down Eq. 4 we get: 

 

εr =
1
E

[σr − (υ ∗ σθ)− (υ ∗ σz)]                                               (A1) 

εθ =
1
E

[σθ − (υ ∗ σr)− (υ ∗ σz)]                                                      (A2) 

εz =
1
E

[σz − υ ∗ σθ − υ ∗ σr]                                                              (A3) 

Because the borehole can be either vertical or deviated, there-
fore it is necessary to utilize stress transformation Equations in 
order to compute the stresses in the borehole coordinate sys-
tem. 
 
σx° = �σH ∗ �COS(ω)�

2 + σh ∗ �SIN(ω)�
2� ∗ �COS(δ)�

2

+ σv ∗ �SIN(δ)�
2                                                                                    (A4) 

σy° = �σH ∗ �SIN(ω)�
2 + σh ∗ �COS(ω)�

2�                                    (A5) 

σz° = �σH ∗ �COS(ω)�
2 + σh ∗ �SIN(ω)�

2� ∗ �SIN(δ)�
2

+ σv ∗ �COS(δ)�
2                                                                                   (A6) 

τxy° =
1
2

(σH − σh) ∗ �SIN(2ω)� ∗ �COS(δ)�                                   (A7) 

τxz° =
1
2
�σH ∗ �COS(ω)�

2 + σh ∗ �SIN(ω)�
2 − σv�

∗ �SIN(2δ)�                                                                                              (A8) 

τyz° =
1
2

(σH − σh) ∗ �SIN(2ω)� ∗ �SIN(δ)�                                     (A9) 

𝜎𝐻 , 𝜎ℎ, 𝜎𝑣 , 𝜏𝑥𝑦, 𝜏𝑥𝑧 and 𝜏𝑦𝑧 will be used  instead of 𝜎𝑥° ,  
𝜎𝑦° , 𝜏𝑥𝑦° , 𝜏𝑥𝑧°  and 𝜏𝑦𝑧°  respectively. 

The stress distribution around a borehole located in an arbi-
trary far-field stress field according to Bradley (1979) can be 
computed by the following equations: 

σr =
1
2

(σH + σh)�1−
R2

r2
�

+
1
2

(σH − σh)�1 + 3
R4

r4
− 4

R2

r2
�COS(2θ)

+ τxy �1 + 3
R4

r4
− 4

R2

r2
�SIN(2θ) + Pw

R2

r2
                                  (A10) 

σθ =
1
2

(σH + σh)�1 +
R2

r2
� −

1
2

(σH − σh)�1 + 3
R4

r4
�COS(2θ)

− τxy �1 + 3
R4

r4
�SIN(2θ)− Pw

R2

r2
                                                (A11) 

σz = σv − 2 ∗ υ(σH − σh) ∗
R2

r2
COS(2θ)− 4 ∗ υ

∗ τxy
R2

r2
SIN(2θ)                                                                                 (A12) 

τθz = �τyz ∗ COS(θ)− τxz ∗ SIN(θ)��1 +
R2

r2
�                        (A13) 

Applying the advanced assumptions and considerations to Eq. 
A10 to A13; 

σrr = Pw − �α ∗ Pp�                                                                             (A14) 

σθθ = (σH + σh)− Pw − �α ∗ Pp�+ σt∆t − 2 ∗ (σH − σh) COS(2θ)
− 4 ∗ τxy ∗ SIN(2θ)                                                                             (A15) 

σzz = σv − �α ∗ Pp�+ σt∆t − 2 ∗ υ(σH − σh) COS(2θ)
− 4 ∗ υ ∗ τxy ∗ SIN(2θ)                                                                      (A16) 

τθz = 2 ∗ �τyz ∗ COS(θ)− τxz ∗ SIN(θ)�                                       (A17) 

σt∆t =
E.αt

(1− v)
(Tw − Ti)                                                                      (A18) 

Back to Eq. A2, substituting σr, σθ and σz in Eq. A2 with the 
effective stresses Eq. A14, A15 and A16 respectively, the tan-
gential strain equation will be: 

εθ =
1
E

[�(σH + σh)− Pw − �α ∗ Pp�+ σt∆t

− 2 ∗ (σH − σh) COS(2θ)− 4 ∗ τxy ∗ SIN(2θ)�

− υ ∗ �Pw − �α ∗ Pp�� − υ ∗ �σv − �α ∗ Pp�

+ σt∆t − 2 ∗ υ(σH − σh) COS(2θ)− 4 ∗ υ ∗ τxy ∗ SIN(2θ)�   (A19) 

After few mathematical steps and arrangements, the equation 
will have the following final form; 
 
 

εθ =
(1 + υ)

E �
(2υ− 1)
(1 + υ) ∗ �α ∗ Pp� − Pw +

(1− υ)
(1 + υ) ∗ σt

∆t

+
1

(1 + υ) ∗
(σH + σh − υ ∗ σv) + 2 ∗ (υ − 1)   

∗ �(σH − σh) COS(2θ) + 2 ∗ τxy ∗ SIN(2θ)��                              (A20) 

 
Finally we obtain the first proposed analytic solution for com-
puting the radial displacement of the impermeable borehole 
wall by replacing εθ in Eq. 09 with Eq. A20. 
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u = r ∗
(1 + υ)

E �Pw −
(2υ − 1)
(1 + υ) ∗ �α ∗ Pp� −

(1− υ)
(1 + υ) ∗ σt

∆t

−
1

(1 + υ) ∗
(σH + σh − υ ∗ σv)− 2 ∗ (υ − 1)   

∗ �(σH − σh) COS(2θ) + 2 ∗ τxy ∗ SIN(2θ)��                              (A21) 

12 APPENDIX B 
 
σrr = Pw(1− α)                                                                                      (B1) 
 
σθθ = (σH + σh)− Pw(1 + α) + σt∆t − 2 ∗ (σH − σh) COS(2θ)

− 4 ∗ τxy ∗ SIN(2θ) + 2η �Pw − �α ∗ Pp��                                      (B2) 
 
σzz = σv − (α ∗ Pw) + σt∆t − 2 ∗ υ(σH − σh) COS(2θ)
− 4 ∗ υ ∗ τxy ∗ SIN(2θ) +  2η�Pw − �α ∗ Pp��                               (B3) 

 

η =
α(1− 2υ)
2(1− υ)                                                                                         (B4) 

By substituting σr, σθ and σz in Eq. A2 with the effective 
stresses Eq. B1, B2 and B3 respectively, the tangential strain 
equation finally will be: 

εθ =
1
E �

(α ∗ Pw) ∗ (2υ− 1) − Pw ∗ (1 + υ)

+ (1 − υ) ∗ �σt∆t + 2η �Pw − �α ∗ Pp���

+ (υ2 − 1) ∗ �2(σH − σh) COS(2θ) + 4 ∗ τxy ∗ SIN(2θ)�

+ σH + σh − υ ∗ σv�                                                                              (B5) 

 
The second proposed analytic solution for computing the ra-
dial elastic displacement of the permeable borehole wall is 
obtained by replacing εθ  in Eq. 09 with Eq. B5.  

u = r ∗
1
E �

Pw ∗ (1 + υ)− (α ∗ Pw) ∗ (2υ − 1)

− (1 − υ) ∗ �σt∆t + 2η �Pw − �α ∗ Pp���

− (υ2 − 1) ∗ �2(σH − σh) COS(2θ) + 4 ∗ τxy ∗ SIN(2θ)�

− σH − σh + υ ∗ σv�                                                                              (B6) 

13 APPENDIX C 
Krief et al. (1990): 𝜶 = 𝟏 − (𝟏 − ∅)

𝟑
𝟏−∅                        (𝑪𝟏) 

 
Lee (2002):                  

 

α = 0.98469 +
−68.7421

1 + e
∅+0.40635
0.09425

      (C2) 

 
Laurent et al. (1993):   

 
α = 1.75 ∗ ∅0.51                                 (C3) 

 
Wang et al. (2001):      

 
α = 1− e(−3.8∗∅−0.86)                       (C4) 
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